Measures of family planning service quality associated with contraceptive discontinuation: an analysis of Measurement, Learning & Evaluation (MLE) project data from urban Kenya [version 1; peer review: 2 approved with reservations]

Karla Feeser¹, Nirali M. Chakraborty¹, Lisa Calhoun², Ilene S. Speizer²

¹Metrics for Management, Baltimore, MD, 21201, USA
²Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA

Abstract
Introduction: Several measures to assess family planning service quality (FPQ) exist, yet there is limited evidence on their association with contraceptive discontinuation. Using data from the Measurement, Learning & Evaluation (MLE) Project, this study investigates the association between FPQ and discontinuation-while-in-need in five cities in Kenya. Two measures of FPQ are examined – the Method Information Index (MII) and a comprehensive service delivery point (SDP) assessment rooted in the Bruce Framework for FPQ.

Methods: Three models were constructed: two to assess MII reported in household interviews (as an ordinal and binary variable) among 1,033 FP users, and one for facility-level quality domains among 938 FP users who could be linked to a facility type included in the SDP assessment. Cox proportional hazards ratios were estimated where the event of interest was discontinuation-while-in-need. Facility-level FPQ domains were identified using exploratory factor analysis (EFA) using SDP assessment data from 124 facilities.

Results: A woman’s likelihood of discontinuation-while-in-need was approximately halved whether she was informed of one aspect of MII (HR: 0.45, p < 0.05), or all three (HR: 0.51, p < 0.01) versus receiving no information, when MII was assessed as an ordinal variable. Six facility-level quality domains were identified in EFA. Higher scores in information exchange, privacy, autonomy & dignity and technical competence were associated with a reduced risk of discontinuation-while-in-need (p < 0.05). Facility-level MII was correlated with overall facility quality (R= 0.3197, p < 0.05).

Conclusions: The MII has potential as an actionable metric for FPQ monitoring at the health facility level. Furthermore, family planning facilities and programs should emphasize information provision and client-centered approaches to care alongside technical competence in the provision of FP care.
Keywords
Contraceptive discontinuation, Family planning, quality, measurement, Kenya

This article is included in the International Conference on Family Planning gateway.

Corresponding author: Karla Feeser (karlafeeser@gmail.com)

Author roles: Feeser K: Formal Analysis, Methodology, Writing – Original Draft Preparation; Chakraborty NM: Conceptualization, Writing – Review & Editing; Calhoun L: Investigation, Writing – Review & Editing; Speizer IS: Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Bill and Melinda Gates Foundation through a grant to the Measurement, Learning & Evaluation Project [OPP52037] and International Conference on Family Planning [OPP1181398]. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the funder. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Feeser K et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Feeser K, Chakraborty NM, Calhoun L and Speizer IS. Measures of family planning service quality associated with contraceptive discontinuation: an analysis of Measurement, Learning & Evaluation (MLE) project data from urban Kenya [version 1; peer review: 2 approved with reservations] Gates Open Research 2019, 3:1453 (https://doi.org/10.12688/gatesopenres.12974.1)

First published: 02 May 2019, 3:1453 (https://doi.org/10.12688/gatesopenres.12974.1)
Introduction

Despite global advances in access to family planning services, 214 million women of reproductive age in developing regions of the world still experience an unmet need for modern contraception. Contraceptive discontinuation is understood to be a driver of unmet need for family planning; in fact, an analysis of Demographic and Health Survey (DHS) data collected in 34 countries between 2005 and 2010 demonstrated that modern method discontinuation while in need—which occurs when a woman who wishes to avoid pregnancy stops using her modern method of contraception—accounted for over one third total estimated unmet need. There is evidence to suggest that the quality of family planning (FP) services can impact continued contraceptive use. Thus, contraceptive discontinuation provides a key measurable outcome of interest in quality improvement strategies in FP service provision; however, identifying which aspects of structural and process quality are correlated with contraceptive method discontinuation can provide insights that are actionable for health systems implementers now—before poor quality service delivery manifests as unmet need.

The assessment of quality of care (QoC) in family planning programs has been largely guided by the Bruce family planning QoC framework for the past several decades. The framework articulates six fundamental domains of quality: choice of methods, information given to clients, technical competence of providers, interpersonal relations, mechanisms for follow-up, and having an appropriate constellation of services. A number of measurement tools exist which include indicators that seek to capture key elements of FP service quality; yet, questions remain as to the utility of existing tools for performance benchmarking and strategic decision making. The broadly endorsed Bruce framework is applied inconsistently among researchers and programs seeking to understand and improve quality of care at the facility level, and limited guidance exists as to how to analyze resulting data once collected. A recent review of quality assessment tools for FP programs in LMICs identified 20 comprehensive tools for the assessment of clinical quality of care. Some are well aligned with the Bruce framework. For example, the Quick Investigation of Quality (QIQ) was developed by MEASURE Evaluation in 2000 as a tool that would balance the feasibility of data collection with the reliability of the resulting data. The QIQ indicators align with 5 out of the 6 domains of FP service quality defined in the Bruce Framework: choice of methods, information provision, technical competence, interpersonal relations, and mechanisms for follow-up. Meanwhile, large scale facility surveys, such as the Service Availability and Readiness Assessment (SARA) used by WHO for health facility assessment in LMICs, typically limit data collection to facility audits which assess infrastructure and readiness for choice only. Indeed, these structural aspects of quality are among the easiest and least expensive to measure.

When data to measure the domains of the Bruce framework are collected inconsistently, it creates an analytical challenge for programs that wish to summarize and compare findings related to the measurement of FP QoC. Some programs have tracked changes over time in certain indicators, while other studies have used various methods to create indices to measure all or some of the elements in the Bruce framework; in either case, indicators may be chosen from existing data collection tools based on the feasibility of data collection, or custom indicators may be developed anew. Where no standardized set of indicators exist, but instruments are designed to capture certain domains of FP QoC, data reduction techniques can be useful to enhance comparability and simplify analyses. For example, the authors of a 2014 DHS Analytical Study to assess the quality of care in FP, antenatal, and sick child services in several countries used principal components analysis (PCA) to create indices corresponding to structure, process, and client satisfaction. Elsewhere, factor analysis has been used to reduce indicators into variables representing different domains of quality corresponding to the Bruce framework. Exploratory Factor Analysis (EFA) is particularly useful in situations where multiple latent variables are likely to be the source of variation in a set of indicators, such as the case in the measure of QoC. EFA can help to determine how many latent variables underlie a set of indicators, and—like PCA—provide a means for data reduction in order to explore the relationship between QoC and outcomes of interest.

Another measure used to assess FP service quality is the Method Information Index (MII). The MII is distinct from the comprehensive assessment tools derived from the Bruce framework, but related - it aims to capture similar information to what would be measured in the Information Provision domain of the Bruce framework, but measures it from the client perspective. Specifically, the MII assesses FP counseling quality through three questions, asked of women in regard to the family planning visit where they received their contraceptive method: “Were you informed of potential side effects of the method?”, “Were you informed on what to do if you experienced side effects?”, and “Were you told about other methods of family planning apart from your current method?” The MII is one of 18 core indicators tracked by the Family Planning 2020 (FP2020) global partnership, which formed in 2012 following the London Summit on Family Planning to help reduce unmet need in the world’s poorest countries. It has also been used in population-based surveys, such as the Performance Monitoring and Accountability 2020 (PMA2020) surveys or the DHS Women’s questionnaire, to report on the quality of FP counseling at the national-level. In these surveys, the MII is calculated as the percentage of women who respond ‘yes’ to all three questions.

The MII captures information exchange during the counseling session and a woman’s understanding of having received that information, giving it the potential to approximate the overall quality of FP services. The simplicity and versatility of the MII makes it an appealing choice for programs and clinics seeking to routinely measure program performance. It can be aggregated and reported at multiple levels—from the clinic to national-level estimates—and it places the client perspective at the center of quality measurement. Furthermore, it is collected and analyzed consistently where tools applying the full Bruce framework are not. However, it captures only one aspect of the Bruce framework – “information given to clients” – and, as with more comprehensive measures, there is limited evidence to show
how well MII predicts outcomes of interest, such as contraceptive discontinuation, when measured at the individual level or when applied programmatically.

Recent (2014) Demographic and Health Survey data from Kenya—the site of this study—indicates that more than half (58%) of women are using contraception, up from 45.5% in 2008–09, and knowledge of modern contraceptive methods among women and men age 15 to 49 is nearly universal; yet, 18% of currently married women have an unmet need for family planning services. Of family planning users, 31% discontinued their method within 12 months – 11% due to side effect and health concerns. With regard to MII in Kenya, 60% of current users of modern contraceptive methods in 2014 reported that they were informed about potential side effects of their method, 52% were told what to do if they experienced side effects, and 79% were given information about other methods.

The present study is a secondary analysis of data collected in select urban sites of Kenya as part of the Measurement, Learning & Evaluation (MLE) Project, implemented by the Carolina Population Center at UNC Chapel Hill. The MLE Project was the evaluation component of the Urban Reproductive Health Initiative (URHI), which operated in Kenya, Nigeria, India, and Senegal from 2010 to 2015. In Kenya, the URHI project, called Tupange, operated in five urban areas in Kenya: Nairobi, Mombasa, Kisumu, Machakos, and Kakamega. The data used come from baseline health facility surveys and household surveys of women that were conducted in 2010 to 2011 (baseline) and again in 2014 to 2015 (endline) in these five urban areas. Two methods for assessing QoC in FP are incorporated into the surveys: the MII, and a modified version of the Quick Investigation of Quality (QIQ). The QIQ has historically used client exit interviews, facility audits, and provider observation to assess a short list of quality of care indicators at the health facility level which align with 5 domains of the Bruce Framework, mentioned previously. Facility readiness is assessed through the facility audit, while the exit interview collects information related to clients’ experience of care at the health facility. The MLE survey instruments incorporate provider surveys in place of provider observation to assess technical competence in clinical procedures and counseling skills. The MLE facility audit contains additional items to assess the sixth domain of the Bruce framework: constellation of services.

In this study, we leverage the existing data to examine the relationship between FP service quality and modern contraceptive discontinuation while-in-need using two QoC measures and explore the feasibility of these measures in the context quality monitoring at the service delivery point.

Methods

Data sources and survey design

The MLE project was initiated in 2009 ahead of the implementation of the Tupange project in Nairobi, Mombasa, Kisumu, Kakamega, and Machakos. Data collection activities included a household survey and a service delivery point (SDP) assessment. The survey and sampling protocol are described below for the data included in the present analysis.

The baseline household survey was conducted with a representative sample of women in the intervention cities from September to November 2010. The household sample was drawn through a two-stage cluster sampling design in which clusters were identified from the most recent Population and Housing Census (2009) and randomly selected in each urban area, from which a random sample of 30 households per cluster was selected. Across the five intervention cities, a total of 13,140 household were selected for interviews. Women aged 15 to 49 who were residents or household visitors were eligible to be interviewed. A follow-up household survey was conducted at endline in 2014/2015, wherein eligible women were tracked using contact information collected at baseline. Household surveys collected information on a variety of topics, including demographic information and household characteristics, current and past FP use and sources of FP. At endline, 5 year reproductive health calendars were also collected.

Baseline SDP surveys took place from August 2011 to November 2011. In Nairobi and Mombasa, all public facilities and all URHI/Tupange facilities were selected; private facilities that were identified as sources of FP by women in baseline household surveys were also selected for surveys. In Kisumu, Kakamega and Machakos, all public and private facilities offering sexual and reproductive health services were included. In total, 279 facilities were surveyed. The SDP survey incorporated a health facility audit, health care provider surveys and client exit interviews. Client exit interviews were only conducted in facilities that reported offering reproductive health services routinely. Women aged 15 to 49 were approached for an interview as they exited reproductive health or child health departments. Interviewers aimed to reach 40 women per facility, half family planning clients and half clients of any other reproductive health service. Survey tools used are available as Extended data.

Inclusion criteria

To assess service quality at the facility level, data are used only from facilities that reported offering FP services, and where provider interviews, client exit interviews, and a facility audit were conducted at baseline in 2011 (n = 124).

To assess contraceptive discontinuation, individual-level data is used from matched baseline (2010/2011) and endline (2014/2015) household surveys of women. Women who were not using a modern, reversible contraceptive method at baseline were excluded, as were women for whom the method start date could not be determined and women who did not report where she received her method, or who reported that she did not know where she received her method. For the remaining women in the sample, 5-year retrospective reproductive calendars were examined to identify the episode of contraceptive use reported by the women at baseline. Women for whom her baseline episode could not be identified in the reproductive calendar within 6 months.
of the method start date reported at baseline were excluded from the analysis. Although pharmacies are recognized as part of the private health sector in Kenya, women who received their method from a pharmacy or chemist (n = 95) were excluded from models assessing the relationship between facility-level measures of quality and discontinuation but included in models assessing the relationship between woman-reported MII and discontinuation. This is because no pharmacies were included in the SDP survey; therefore, facility-level measures of quality as assessed in this study are not reflective of QoC in a pharmacy setting. Figure 1 illustrates how women were selected for inclusion in the present analyses (n = 1,033 & n = 938). Chi-square statistics were calculated to examine demographic differences between current FP users who were included and excluded in the analyses (Table 1).

Statistical analysis
All analyses were conducted using Stata version 14.2.

Linking women to facility level measures of quality
To examine the relationship between facility-level measures of quality and discontinuation, facilities were categorized as public hospitals, public facilities, private hospitals and private facilities. Public facilities included government health centers, government dispensaries and other public facilities. Private facilities included private clinics, nursing/maternity homes, faith-based home/health centers, other NGO clinics, and other private facilities. In baseline household interviews, women reported the facility type where they received their method, and those facility types were condensed into 4 categories to align with the SDP analysis. Because women could not be linked to the specific facility where they received their baseline contraceptive method, quality variables were aggregated into categories according to city and facility type, which necessitates the assumption that women would have attended a facility within the city where they lived. Where facility audits distinguished between private hospitals and private clinics, the household survey combined private and faith-based hospitals and clinics into two categories: ‘Private hospital/clinic’ and ‘Faith-based hospital/ clinic’. Women who reported receiving their method from one of these categories, were linked to measures of quality at private hospitals, except in Kakamega – where no private hospitals were included in the SDP assessment, so women were linked to measures of quality at public facilities.

Discontinuation analyses
Three models were constructed to determine the relationship between measures of FP service quality and discontinuation: two to assess MII reported at baseline in household interviews (as an ordinal variable, and as a binary variable), and one for summative domains of quality at the facility level. Women who indicated that they discontinued their method due to side effects, health concerns, method failure, issues related to access or disapproval of their partner and who did not switch to a new modern method were considered to have discontinued while in need. Women who indicated that they wanted to become pregnant, were no longer sexually active, or who switched to a different modern method were censored. Time to discontinuation was measured in months. All women were right-censored at 36 months. For all discontinuation models, Cox proportional hazards ratios were estimated where the event of interest was discontinuation while in need. The following variables were screened for inclusion as covariates in the final adjusted models: age, marital status, parity, education, wealth, facility type, and method-type (long-term method or short-term method) at baseline. In models to assess the relationship between MII and discontinuation, pharmacies were categorized as ‘Private Facilities’ within the facility type variable. Correlations between potential covariates were examined. All independent variables and covariates were checked to ensure proportional hazards assumptions were met. The final models of women-level and facility-level measures of quality related to discontinuation were adjusted for covariates that were significant at p < 0.1 when examined individually in a Cox proportional hazard model. We accounted for intragroup correlation in the facility-level discontinuation analysis by using a shared frailty model. Facility level quality domains were assessed first individually, and then together.

Independent variables
Calculation of Woman MII. Women were assigned an MII score of 0 to 3 by adding together her responses to each of the three MII questions (0 for no, 1 for yes), asked during baseline household interviews in reference to her current method: “Were you told by a health or family planning worker about side effects or problems you might have using this family planning method?”, “Were you told by a health or family planning worker about what to do if you experienced side effects or problems with this method?”, “Were you told by a health or family planning worker about other methods of family planning (beside the one you are currently using)?” Woman MII was examined in discontinuation analyses as an ordinal variable (0 to 3) and as a binary variable (3 vs. less than 3).

Facility quality variables. Exploratory factor analysis (EFA) was used to identify domains of family planning service quality at the facility level. To incorporate data from provider interviews, a single representative provider survey was chosen for each facility based on highest cadre, and most years worked at the facility. Client exit interview variables were incorporated into the EFA as continuous variables (0 to 1) corresponding to the proportion of clients at the facility who indicated an affirmative response to each question. Efforts were made to reduce the number of variables entered into the EFA model, in order to improve the subject to item ratio (N:p). Variables were combined into composite variables aligned with the list of 25 QIO indicators where feasible, and converted to binary variables or standardized to continuous variables (0 to 1). Variables pertaining to basic infrastructure – water, electricity and toilet facilities – were combined into a binary variable and assigned a value of 1 if the facility had all three characteristics. To generate a standardized method-mix score, facilities received one point each for having available: one permanent, one long-acting reversible contraception (LARC) (implant or intrauterine device (IUD)), one short term hormonal method (pill, emergency contraception (EC), injectable), and one barrier...
Figure 1. Participant Diagram.
Table 1. Demographic characteristics and baseline contraceptive method use of women aged 15 to 49 in urban Kenya included in models assessing the relationship between the Method Information Index (MII) and discontinuation-while-in-need. Of the 2,189 users of modern, reversible contraceptive methods at baseline, 1,033 were included in the MII to discontinuation model and 1,156 current family planning (FP) users were excluded. (Note: an additional 95 women were excluded from the facility quality to discontinuation model because they reported receiving their method from a pharmacy or chemist).

<table>
<thead>
<tr>
<th>Demographic Characteristics</th>
<th>Women included in analysis (N = 1,033)</th>
<th>Current FP users excluded from analysis (N = 1,156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 to 24</td>
<td>263 (25.5%)</td>
<td>342 (29.6%)</td>
</tr>
<tr>
<td>25 to 34</td>
<td>535 (51.8%)</td>
<td>508 (43.9%)</td>
</tr>
<tr>
<td>35 to 49</td>
<td>235 (22.8%)</td>
<td>306 (26.5%)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Education</td>
<td>13 (1.3%)</td>
<td>25 (2.2%)</td>
</tr>
<tr>
<td>Incomplete Primary</td>
<td>155 (15.0%)</td>
<td>184 (15.9%)</td>
</tr>
<tr>
<td>Complete Primary</td>
<td>327 (31.7%)</td>
<td>350 (30.3%)</td>
</tr>
<tr>
<td>Secondary plus</td>
<td>538 (52.1%)</td>
<td>597 (51.6%)</td>
</tr>
<tr>
<td>Wealth^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quintile 1</td>
<td>255 (24.7%)</td>
<td>275 (23.8%)</td>
</tr>
<tr>
<td>Quintile 2</td>
<td>221 (21.4%)</td>
<td>254 (22.0%)</td>
</tr>
<tr>
<td>Quintile 3</td>
<td>184 (17.8%)</td>
<td>229 (19.8%)</td>
</tr>
<tr>
<td>Quintile 4</td>
<td>222 (21.5%)</td>
<td>251 (21.7%)</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>151 (14.6%)</td>
<td>147 (12.7%)</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nairobi</td>
<td>256 (24.8%)</td>
<td>342 (29.6%)</td>
</tr>
<tr>
<td>Mombasa</td>
<td>109 (10.6%)</td>
<td>168 (14.5%)</td>
</tr>
<tr>
<td>Kisumu</td>
<td>154 (14.9%)</td>
<td>235 (20.3%)</td>
</tr>
<tr>
<td>Machakos</td>
<td>313 (30.3%)</td>
<td>227 (19.6%)</td>
</tr>
<tr>
<td>Kakamega</td>
<td>201 (19.5%)</td>
<td>184 (15.9%)</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>60 (5.8%)</td>
<td>187 (16.2%)</td>
</tr>
<tr>
<td>Married or living together</td>
<td>902 (87.3%)</td>
<td>856 (74.1%)</td>
</tr>
<tr>
<td>Other</td>
<td>71 (6.9%)</td>
<td>113 (9.8%)</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No births</td>
<td>7 (0.7%)</td>
<td>47 (4.1%)</td>
</tr>
<tr>
<td>One birth</td>
<td>135 (13.1%)</td>
<td>174 (15.1%)</td>
</tr>
<tr>
<td>Two births</td>
<td>358 (34.7%)</td>
<td>306 (26.5%)</td>
</tr>
<tr>
<td>Three births</td>
<td>268 (25.9%)</td>
<td>291 (25.2%)</td>
</tr>
<tr>
<td>Four or more births</td>
<td>265 (25.7%)</td>
<td>338 (29.2%)</td>
</tr>
</tbody>
</table>

1 Current users of family planning (FP) who were excluded from analysis if they matched any of the following criteria: 1) start date of baseline method could not be determined; 2) woman could not be linked to facility type as the source of her method at baseline; 3) complete reproductive calendar information was not available for the woman at end line; or 4) the woman’s baseline episode of contraceptive use could not be identified in her reproductive calendar within 6 months of the start date she reported at baseline.

2 Wealth quintiles are calculated across the 5 cities.
method. The number of family planning methods offered was summed (range: 0 to 12) for each facility, and then standardized to 0 to 1. Checklist items not included in the list of 25 QIQ indicators, such as those pertaining to infection prevention equipment, were standardized to a continuous variable (0 to 1) according to the proportion of items achieved within the checklist. Other facility audit variables were coded as binary variables. The final N:p ratio was 124:38, or 3.3:1.

The EFA was an iterative process. All variables were entered into the factor analysis model using the principal factors method. The number of factors was determined based on the resulting scree plot, and by restricting the analysis to factors with eigenvalues > 1. An orthogonal varimax factor rotation was applied in order to produce uncorrelated factors. Factor analysis was repeated until all variables loaded with a uniqueness > 0.8 were excluded, and those remaining loaded on to at least one factor at 0.3 or higher. Variables were assigned to the factor where they loaded the highest. Cronbach’s alpha was examined for each factor to understand the internal consistency of the items contained within it. Summative quality domain variables were generated for each facility by adding up the values of the variables that loaded into each factor.

Facility level quality to MII analysis

To better understand the relationship between these two measures of FP service quality that could be collected at the facility level, a facility-level measure of MII was calculated for each of the 124 facilities included in the quality analysis. Facility MII was calculated at the percent (%) of FP clients who responded ‘yes’ to all three MII questions during the baseline SDP survey. Spearman correlations were run between facility-level MII and each summative quality domain among the sample of facilities included in the analysis. Additionally, a scatter plot fitted with a regression line and 95% CI was examined for facility-level MII vs. overall quality scores.

Results

Analytical sample

124 facilities were included in the present analysis. Table 2 describes the distribution and characteristics of those facilities included in the analysis. Approximately 53% were public hospitals or other public facilities; 47% were private hospitals or other private facilities. The majority of facilities—approximately 35%—were located in Nairobi. Of 5,217 women with matched baseline and endline interviews, 1,033 women were ultimately included in the MII to discontinuation analysis and 938 were included in the facility quality to discontinuation analysis. The resulting analytical samples consisted of 1,033 and 938 baseline and endline episodes of contraceptive use (one per woman), respectively.

Table 1 describes the demographic characteristics of current FP users who were included in the analysis and excluded from the analyses; however, current FP users who were excluded from the analysis were more likely to have never married (p < 0.05). The salient features of the episode of contraceptive method use at baseline among women included in the analyses can be found in Table 3. Most women received their method from a public hospital (44.9% and 49.5%, respectively) or private hospital (26.2%, and 25.7%, respectively). The majority of women used injectables (59.2% and 62.5%, respectively) or oral contraceptives (19.0% and 14.7%, respectively) as their contraceptive method. 20.9% and 21.1% of baseline FP users in each of the two analytical samples discontinued use of their method within 3 years; 5.2% and 4.9% switched to a different method; 73.9% and 74.0% continued use of their method throughout the 3 year window.

The distribution of women’s MII scores is presented at the bottom of Table 3. In baseline household interviews, 15.7% of the 1,033 women included in the MII to discontinuation analysis reported never having been informed of any of the three elements of the MII in regard to their current method. More than half of the sample (55.5%) answered ‘Yes’ to all three questions. There were no significant differences in the distribution of MII scores (p = 0.26) or the frequency with which women answered yes to all three MII questions between the full analytical sample and the reduced sample used in the facility quality to discontinuation analysis (p = 0.33). Figure 2 presents overall facility-level MII, by facility type, for the 124 facilities included in analysis.

Quality analysis

The following six domains of quality were identified in EFA of 38 facility-level variables within the sample of 124 facilities: client satisfaction, readiness for choice and management support;
Table 3. Characteristics of baseline contraceptive use for women included in models assessing the relationship between method discontinuation and the Method Information Index (MII) or Facility Quality, respectively.

<table>
<thead>
<tr>
<th></th>
<th>MII to Discontinuation Models (N = 1,033)</th>
<th>Facility Quality to Discontinuation Models (N = 938)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Contraceptive Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implant</td>
<td>120 (11.6%)</td>
<td>119 (12.7%)</td>
</tr>
<tr>
<td>IUD</td>
<td>73 (7.1%)</td>
<td>70 (7.5%)</td>
</tr>
<tr>
<td>Injectable</td>
<td>611 (59.2%)</td>
<td>586 (62.5%)</td>
</tr>
<tr>
<td>Oral Contraceptive</td>
<td>196 (19.0%)</td>
<td>138 (14.7%)</td>
</tr>
<tr>
<td>Condoms</td>
<td>33 (3.2%)</td>
<td>25 (2.7%)</td>
</tr>
<tr>
<td>Episode Type (3YR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuer</td>
<td>216 (20.9%)</td>
<td>198 (21.1%)</td>
</tr>
<tr>
<td>Switcher</td>
<td>54 (5.2%)</td>
<td>46 (4.9%)</td>
</tr>
<tr>
<td>Continuer</td>
<td>763 (73.9%)</td>
<td>684 (74.0%)</td>
</tr>
<tr>
<td>Source of FP Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Hospital</td>
<td>464 (44.9%)</td>
<td>464 (49.5%)</td>
</tr>
<tr>
<td>Other Public Facility</td>
<td>191 (18.5%)</td>
<td>191 (20.4%)</td>
</tr>
<tr>
<td>Private Hospital</td>
<td>241 (23.3%)</td>
<td>241 (25.7%)</td>
</tr>
<tr>
<td>Other Private Facility</td>
<td>137 (13.7%)</td>
<td>42 (4.5%)</td>
</tr>
<tr>
<td>MII Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>162 (15.7%)</td>
<td>140 (14.9%)</td>
</tr>
<tr>
<td>1</td>
<td>217 (21.0%)</td>
<td>184 (19.6%)</td>
</tr>
<tr>
<td>2</td>
<td>81 (7.9%)</td>
<td>77 (8.2%)</td>
</tr>
<tr>
<td>3</td>
<td>573 (55.5%)</td>
<td>537 (57.3%)</td>
</tr>
<tr>
<td>MII by Question</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed of side effects</td>
<td>669 (64.8%)</td>
<td>627 (66.9%)</td>
</tr>
<tr>
<td>Told how to resolve problems</td>
<td>611 (59.2%)</td>
<td>572 (62.0%)</td>
</tr>
<tr>
<td>Informed of other methods</td>
<td>818 (79.2%)</td>
<td>750 (80.0%)</td>
</tr>
</tbody>
</table>

1 Classification of the baseline episode at 3 years. Discontinuers are women who discontinued their method within 3 years for any reason, without switching to a new method – including discontinuation while in need, discontinuation while not in need, and method failure.

IUD – intrauterine device, FP – Family planning

infrastructure & equipment; privacy, autonomy, and dignity; and information exchange (Table 4). The actual range and distribution of summative facility quality scores across the 124 facilities included in the analysis are described in Table 5. Overall quality scores ranged from 11.8 to 27.9 (possible range 0 to 30), with an average overall score of 19.6.

Facility level MII to facility level quality
At the facility-level, MII measured as the % of women who responded ‘yes’ to all three MII questions in client exit interviews was significantly correlated with the domains of infrastructure & equipment (R = 0.2354, p < 0.05), and information provision (R = 0.6818, p < 0.05) (Table 6). Facility level MII was also correlated with overall summative quality scores (R = 0.3197, p < 0.05), and a positive association was examined in a two-way plot fitted with a regression line and 95% CI (Figure 3).

Discontinuation analysis
Among the 216 women who stopped using their method within the 3-year period, 210 discontinued while-in-need (20.3% of 1,033 women included in the MII to discontinuation analysis). The results of the discontinuation analysis are presented in the form of crude and adjusted hazard ratios in Table 7 and Table 8. All models are adjusted for age, method-type and facility-type.
Figure 2. Distribution of facility-level Method Information Index (MII) scores, by facility type.

Women who responded yes to all three MII questions asked in relation to their current contraceptive method in baseline household interviews were no less likely to discontinue their method while in need than women who responded yes to less than three (p > 0.05); however, when MII was examined as an ordinal variable in the discontinuation analysis, a woman’s likelihood of discontinuation while in need was reduced by approximately 50% whether she reported being informed of just one aspect of MII (HR: 0.45, p < 0.05), or informed of all three (HR: 0.51, p < 0.01) compared to none (Table 7) versus those who received no information. Facility-level measures of quality derived through EFA were found to be significantly associated with discontinuation as well (Table 8). Higher scores in the domains of privacy, autonomy & dignity (p < 0.01), technical competence (p < 0.01), and information exchange (p < 0.05) reduced the risk of discontinuation while in need; higher scores in client satisfaction were associated with an increased risk of discontinuation (p < 0.01).

Discussion

In this study of women and facilities in urban Kenya, two measures of FP service quality were assessed for their association with contraceptive discontinuation: a QIQ-based facility quality assessment tool and the Method Information Index (MII). Women who reported receiving higher quality FP counseling according to their MII score were significantly less likely to discontinue their method over the next three years compared to women with an MII score of zero. In fact, a woman’s likelihood of discontinuation while in need was cut in half whether she reported being informed of just one aspect of MII or informed of all three versus receiving no information at all.

The analysis of the comprehensive facility-based QoC assessment tool was more complex. Using EFA, we identified six domains of FP service quality captured by the assessment tool. Four of these domains – client satisfaction, readiness for choice & management support, information exchange, and technical competence—closely align with the domains that the QIQ indicators are intended to capture; however, two additional domains of quality emerged in this setting: privacy, autonomy & dignity, and infrastructure & equipment. Items included in the assessment tool which may have captured mechanisms for follow-up and/or constellation of services were not sufficiently correlated to be identified as domains of quality in this analysis. Of the six that were identified, three domains of quality—privacy, autonomy & dignity, technical competence, and information exchange—were found to be significantly associated with a decreased risk of contraceptive discontinuation. Additionally, overall facility quality as measured by the summative domains derived in EFA was correlated with facility-level measures of MII.

The knowledge contributions of this study are manifold. First, programs operating in urban Kenya that wish to reduce the rate of contraceptive discontinuation among their clients might refer to these preliminary findings in their decision making. When women receive, or understand to have received, the information reported in the MII, they are less likely to discontinue their method. Thus, programs may choose to prioritize ensuring provision of full information on other methods and side effects in all contraceptive counseling that takes place at a facility and from this, could expect some reduction in each patient’s risk of discontinuing her method as a result. Additionally, efforts to improve aspects of privacy, autonomy, & dignity in FP service provision and to hire and train competent providers may strengthen rates of contraceptive continuation among their clients. These results echo findings from other settings where current method use or discontinuation were an outcome of interest. For example, interventions to train providers in evidenced-based medicine or to improve
provider competencies in areas such as contraceptive counseling and client-management have been shown to improve contraceptive continuation in a variety of settings. Similarly, a 2002 study conducted in Egypt found that interactions between providers and family planning clients that could be characterized as ‘client-centered’ versus ‘physician-centered’ were associated with higher rates of method continuation 7 months later.

As such, these findings may contribute to efforts to develop standardized, actionable measures for QoC in FP. The framework established by Bruce in 1990 ushered in a client focused approach to family planning services by establishing quality services as those in which clients are free to choose a method, are empowered to continue using the method, and are provided with avenues to seek help with or change their method. The framework achieved this paradigm shift by emphasizing choice, information provision, and mechanisms for follow-up as key tenets of quality, and establishing interpersonal relationships—vital for the facilitation of those tenets of quality—as a domain of quality in itself. However, the Bruce framework does not...
Table 5. Range and distribution of summative facility quality domain scores, summarized by city and by facility type.

<table>
<thead>
<tr>
<th>Category</th>
<th>n</th>
<th>Client Satisfaction</th>
<th>Readiness for Choice & Management Support</th>
<th>Infrastructure & Equipment</th>
<th>Privacy, Autonomy & Dignity</th>
<th>Information Provision</th>
<th>Technical Competence</th>
<th>Overall Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>range</td>
<td>mean</td>
<td>sd</td>
<td>range</td>
<td>mean</td>
<td>sd</td>
<td>range</td>
</tr>
<tr>
<td>All</td>
<td>124</td>
<td>0 - 4</td>
<td>1.6</td>
<td>0.8</td>
<td>1 - 7</td>
<td>4.6</td>
<td>1.6</td>
<td>0.5 - 4</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nairobi</td>
<td>43</td>
<td>0.7 - 3.3</td>
<td>1.3</td>
<td>0.5</td>
<td>2.3 - 7</td>
<td>5.2</td>
<td>1.2</td>
<td>1.2 - 4</td>
</tr>
<tr>
<td>Mombasa</td>
<td>25</td>
<td>0.5 - 3.5</td>
<td>1.9</td>
<td>0.7</td>
<td>1.6 - 6.9</td>
<td>4.9</td>
<td>1.5</td>
<td>0.7 - 4</td>
</tr>
<tr>
<td>Kisumu</td>
<td>30</td>
<td>0 - 3.5</td>
<td>1.4</td>
<td>0.8</td>
<td>1 - 6.8</td>
<td>4.2</td>
<td>1.6</td>
<td>0.5 - 4</td>
</tr>
<tr>
<td>Machakos</td>
<td>15</td>
<td>0.8 - 4</td>
<td>2.2</td>
<td>0.9</td>
<td>1 - 6.8</td>
<td>3.3</td>
<td>1.9</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Kakamega</td>
<td>11</td>
<td>0.9 - 4</td>
<td>2.3</td>
<td>1.0</td>
<td>3.2 - 6.2</td>
<td>4.6</td>
<td>0.9</td>
<td>1.2 - 4</td>
</tr>
<tr>
<td>Facility Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Hospitals</td>
<td>11</td>
<td>0.7 - 2.3</td>
<td>1.5</td>
<td>0.5</td>
<td>4.4 - 7</td>
<td>6.0</td>
<td>0.8</td>
<td>2.6 - 4</td>
</tr>
<tr>
<td>Public Facilities</td>
<td>55</td>
<td>0 - 3.5</td>
<td>1.5</td>
<td>0.6</td>
<td>1.7 - 6.6</td>
<td>4.7</td>
<td>1.4</td>
<td>0.5 - 4</td>
</tr>
<tr>
<td>Private Hospitals</td>
<td>8</td>
<td>0.8 - 2.7</td>
<td>1.5</td>
<td>0.7</td>
<td>3.2 - 6.5</td>
<td>5.4</td>
<td>1.1</td>
<td>2.8 - 4</td>
</tr>
<tr>
<td>Private Facilities</td>
<td>50</td>
<td>0.5 - 4</td>
<td>2.0</td>
<td>0.9</td>
<td>1 to 7</td>
<td>4.2</td>
<td>1.7</td>
<td>0.9 - 4</td>
</tr>
</tbody>
</table>

Note: Summative quality domain are summarized here for descriptive purposes by city and by facility type; however, scores were applied to women in discontinuation analysis according to city-facility type categories (i.e. public hospitals in Nairobi).
Table 6. Correlation between facility-level Method Information Index (MII) scores and domains of family planning quality derived in exploratory factor analysis (EFA) (n = 124 facilities).

<table>
<thead>
<tr>
<th>Domain</th>
<th>Spearman’s rho</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Satisfaction</td>
<td>0.067</td>
<td>0.457</td>
</tr>
<tr>
<td>Readiness for Choice & Management Support</td>
<td>0.127</td>
<td>0.159</td>
</tr>
<tr>
<td>Infrastructure & Equipment</td>
<td>0.235</td>
<td>0.009</td>
</tr>
<tr>
<td>Privacy, Autonomy & Dignity</td>
<td>-0.071</td>
<td>0.431</td>
</tr>
<tr>
<td>Information Provision</td>
<td>0.682</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Technical Competence</td>
<td>0.016</td>
<td>0.863</td>
</tr>
<tr>
<td>Overall Quality</td>
<td>0.320</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Figure 3. A scatter plot fitted with a regression line and 95% CI for facility-level Method Information Index (MII) scores vs. overall summative quality scores at 124 high-volume facilities.

Table 7. Unadjusted and adjusted hazard ratios for 3-year discontinuation of modern contraception while-in-need, by Method Information Index (MII) score reported by woman at baseline; two models presented for binary and ordinal variables (n = 1,033 women).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unadjusted</th>
<th>Adjusted1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (p)</td>
<td>[95% Conf. Interval]</td>
</tr>
<tr>
<td>Method Information Index (Binary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answered 'No' to at least one question (ref)</td>
<td>0.76 (0.180)</td>
<td>[0.50 1.14]</td>
</tr>
<tr>
<td>Answered 'Yes' to all 3 questions</td>
<td>0.45 (0.012)</td>
<td>[0.24 0.84]</td>
</tr>
<tr>
<td>Method Information Index (Ordinal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MII – 0 (Answered 'No' to all 3) (ref)</td>
<td>0.45 (0.012)</td>
<td>[0.24 0.84]</td>
</tr>
<tr>
<td>MII - 1</td>
<td>0.45 (0.075)</td>
<td>[0.19 1.09]</td>
</tr>
<tr>
<td>MII - 2</td>
<td>0.48 (0.003)</td>
<td>[0.23 0.78]</td>
</tr>
</tbody>
</table>

1Adjusted for woman’s age at baseline, facility type, and method type (long-term vs. short-term method)
Table 8. Unadjusted and adjusted hazard ratios for 3-year discontinuation-while-in-need of modern contraception by facility-level measures of quality (n = 938 women).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unadjusted</th>
<th>Adjusted<sup>1,2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>p</td>
</tr>
<tr>
<td>Privacy, Autonomy & Dignity</td>
<td>0.07<sup>3</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Technical Competence</td>
<td>0.81<sup>3</sup></td>
<td>0.006</td>
</tr>
<tr>
<td>Client Satisfaction</td>
<td>2.80<sup>3</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Information Provision</td>
<td>1.05</td>
<td>0.874</td>
</tr>
<tr>
<td>Infrastructure & Equipment</td>
<td>0.89</td>
<td>0.592</td>
</tr>
<tr>
<td>Readiness for Choice & Management Support</td>
<td>1.44</td>
<td>0.001</td>
</tr>
</tbody>
</table>

¹Intragroup correlation was accounted for using a shared frailty model
²Adjusted for woman’s age at baseline, facility type, and method type (long term vs. short term method)

Explicitly address issues of privacy, autonomy or dignity, nor are these issues explicitly addressed in many of the existing studies linking client-centered or person-centered approaches to care to FP outcomes^{30–33}. For example, in the 2002 study in Egypt referenced above, ‘client-centered’ models of communication were identified as those with a high proportion of solidarity statements (versus disagreement statements), but issues of dignity, respect or privacy were not explicitly measured. In the present study, the domain most closely aligned with client-centered approaches to care contains explicit indicators of client comfort and privacy, including: ‘proportion of clients who reported they were comfortable asking questions’, and ‘proportion of clients who had visual privacy’, ‘proportion of clients who had auditory privacy’. The QIQ was based on the Bruce framework, and does not contain all of the aspects now considered important to client-centered care; yet, those measures that are present came together in EFA to form a domain independent of other domains of quality, even if it does not represent a comprehensive measure of client-centered or person-centered care. Given these findings, and an understanding of the rights of patients to dignified and respectful FP care, we agree with others who have suggested that more comprehensive and explicit measures of client-centeredness should be developed and incorporated into family planning quality measures^{32,33}.

In this study, structural aspects of quality, such as infrastructure, equipment and facility readiness, were not associated with contraceptive discontinuation. Overall, these domains were more homogenous across facilities, which may suggest that indicators pertaining to structural quality, while generally easier and less expensive to measure, are better suited for measuring against a minimum acceptable level of quality, and process measures are more appropriate for teasing out which aspects of a facility or program’s performance will lead to better links with outcomes.

The appeal of using the MII over more comprehensive measures of FP QoC for routine quality monitoring at the facility or program level is clear – it contains only three questions, it is easily assessed and analyzed, it can be aggregated for upward reporting and measurement, and it allows for benchmarking against national standards. Therefore, to better understand the utility of using MII at the facility-level, we examined the correlation between facility-level measures of MII and other facility-level measures of quality. MII assessed at the facility level was not correlated with all of the domains of quality that were associated with a decreased risk of discontinuation among women. Expectedly, facility-level MII was found to be correlated with the information exchange domain, but there was no correlation with privacy, autonomy, & dignity, or with technical competence. However, it was correlated with measures of overall facility quality, and with scores in the facility infrastructure domain. The client exit interviews (CEI) included in the SDP assessment in the MLE study are a good fit in the context of this comprehensive assessment tool, but were not designed to be representative of FP clients at any given facility, which informed our decision to exclude facility-level MII from the discontinuation analyses. Nonetheless, given these findings – that for a woman, her understanding of having received any MII information is associated with her being less likely to discontinue her method, and that when measured at the facility level, MII is correlated with measures of overall quality, more research is needed to determine how the measurement of MII can be refined at the facility level so that it can provide information to facilities and program managers that is actionable for improving outcomes.

Limitations of this study include the size of the analytical sample used (n = 1,033), which represents less than half of the 2,189 women interviewed at baseline and endline who were identified as current users of a modern reversible contraceptive method in 2010. The women who were dropped would have been eligible for inclusion in the analysis had it been possible to link them to the type of facility where they had received their method, to determine their method start date, and to identify their baseline episode of contraceptive use within the reproductive health calendar collected at endline. The final samples are much
smaller than the original representative sample of women, and
the generalizability of these results may be limited; however,
the demographic characteristics of current FP users included
in and excluded from the analysis were found to be comparable
(Table 1). We were unable to identify the exact facility where each
woman received her FP method; thus, this study linked women
to a measure of average facility quality based on her location
and the type of facility where she received her method, assuming
that women seek services within the city where she resides, which
may be inaccurate in some cases. Additionally, quality meas-
ures aggregated at the facility type and city level may not be
representative of a women’s individual experience of care.

Together these limitations may attenuate any existing associations
between other domains of facility quality identified in our study
and contraceptive discontinuation, or perhaps no association
exists. The reason for the association identified between the
client satisfaction domain and an increased risk of discontinu-
ation is unclear, but we do not interpret this to mean that that
higher rates of client satisfaction will lead to higher rates of
 discontinuation among women. There was no single variable
within the domain that could be identified as the main driver of
this finding. The domain includes only client reported meas-
ures (of wait time, being treated well by staff and providers,
and of experiencing good counseling skills during the visit). This
may be an indication of the reliability of client-reported meas-
ures, especially where women are approached and interviewed
as they are exiting a facility and may be reticent to provide nega-
tive feedback regarding staff and providers; however, given our
mathematical approach to the quality analysis, we recognize that
the face validity of the items in this domain may be poor. The
items held together mathematically in factor analysis, but
they may be representing some construct other than ‘client
satisfaction’.

Conclusion
Our study found a positive association between woman-
reported MII and facility-level measures of information provi-
sion, technical competence, privacy, autonomy & dignity and
contraceptive method continuation over 3 years. The find-
ings suggest that family planning facilities and programs should
emphasize information provision and client-centered approaches
to care alongside technical competence in the provision of FP
care. More work is needed to determine how the measurement
of MII can be refined at the facility level as an actionable met-
ric for improving outcomes. Furthermore, comprehensive and
explicit measures of client-centeredness which incorporate
aspects of privacy, autonomy & dignity should be emphasized
and operationalized as standard measures of FP QoC are
advanced.

Ethical considerations and consent
The study protocol and tools were approved by the Institutional
Review Board at the University of North Carolina at Chapel
Hill and the Kenya Medical Research Institute Ethical Review
Committee. All household-level participants and client exit

interview participants provided verbal consent while providers
provided written consent.

Data availability
Underlying data
The data used in this study are available upon request. Please see:
Carolina Population Center Data Portal for the Measurement,
Learning & Evaluation

project at: https://data.cpc.unc.edu/projects/14/view to request the

Data are available for download after an approval of a restricted
use application, which involves signing a data use agreement
and providing brief information about intent of use (investiga-
tor information, research team information, and statement of
purpose). The endline Women’s data is restricted to matched
women only.

This project contains the following underlying data:
Baseline Service Delivery Point Survey (2010–11)
• SDP Facility Audit
• SDP Client exit interviews
• SDP Provider survey

Baseline Household Survey (2010–11)
• Women’s data

Endline Household Survey (2014–15)
• Women’s data

Extended data

org/10.15139/S3/XAJYU1

This project contains the following Extended data:
• Kenya Baseline Woman Questionnaire.pdf (Baseline
household woman survey available in English and
Swahili)
• Kenya Baseline SDP Exit Interview (Eng-Swa).pdf (Exit
interview survey available in English, Swahili, Kamba
and Luo)
• Kenya Baseline SDP Facility Audit.pdf (Baseline service
delivery point survey)
• Kenya Baseline SDP Service Provider Survey.pdf
(Provider survey available in English)
• Kenya Endline Woman Questionnaire.pdf (Endline
household woman survey available in English and
Swahili)
This work was supported by the Bill and Melinda Gates Foundation through a grant to the Measurement, Learning & Evaluation Project [OPP52037] and International Conference on Family Planning [OPP1181398]. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the funder.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We would like to thank the Kenya Medical Research Institute – Research, Care and Training Program, the Tupange program (led by Jhpiego), and the Kenya National Bureau of Statistics for their support with data collection.

References

23. StataCorp: Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.
Open Peer Review

Current Peer Review Status: ??

Version 1

Reviewer Report 11 June 2019

https://doi.org/10.21956/gatesopenres.14081.r27118

© 2019 Tsui A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Amy Ong Tsui

Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

The Method Information Index is one of the core FP2020 indicators tracked through surveys based on client experience with provider, in being told of side effects, what to do if experiencing side effects, and told about other methods. This paper looks at two measures of quality, one the MII and the other a constructed score (with six domains) using exploratory factor analysis with a large number of health facility variables. The two are examined in relation to a respondent’s time to discontinuation while in need over a 3-year period. The data are drawn from the URHI MLE surveys of facilities, women and clients, whereby aggregate measures of FPQ at facilities are linked to women, and client data are aggregated to represent FPQ at the facility level. The MII is put forth as an “actionable metric” for family planning (FP) quality. Among the EFA-based domains, information exchange, privacy/autonomy/dignity and technical competence were associated with significant reductions of discontinuation risk. Client satisfaction and Readiness for Choice on the other hand had significantly positive associations with discontinuation risk.

1. Perhaps the most important chart in the paper is Figure 1, which traces the female sample from baseline through endline (discontinuation analysis of the calendar episodes). A similar chart regarding the SDPs (service delivery points) would have been helpful.

2. The MII is measured as a proportion of the sample female population, who may or may not have all received modern contraceptive services.

3. The original sample for 5 sites is 13,140 households. The top box in Figure 1 begins with 5,217 women with matched baseline and endline interviews. Is the difference due to loss to follow-up and if so, what are the implication of selection bias for the analysis?

4. How was loss to follow-up (LFU) handled in the analysis with either the 1033 users for the MII model or the 938 users for the FPQ model? Did the authors just accept those who were relocated or try to weight for LFU?
5. In Figure 1, please double check the figures and also label the participants “users” (as opposed to “women”) from the second tier of boxes down to be consistent. You may also want to include a 1-2 sentence explanation of what a box plot is in Figure 2 (median and end points are shown).

Some questions/comments about the modeling:

1. Did you include city in the models as fixed effects? Tables 2 and 4 suggests there are differences by city in quality score and client composition. Also the column title in Table 2 should be “Current FP users included in the analysis”. Be careful and consistent with the labeling.

2. What was the range of number of clients across the 124 high-volume facilities whose data were used to construct the facility-level MII measure? Table 2 appears to be discussed before Table 1. Given these are high-volume facilities, and not necessarily representative of all facilities in the 5 sites of Kenya, some caution is warranted with the results.

3. Tables 4-8 are discussed very cursorily. What is the rationale for the limited set of control variables (woman’s age, facility type and method type)? Why not also include other covariates shown in Table 1?

4. Table 4 by my count has 29 variables, not 38 variables used for the EFA (see the table title). The alpha values are by and large high, which is positive, but could be related to these 124 facilities being selectively high-volume. There is a word missing in the last variable “Provider…the client’s family planning preferences”.

5. Figure 3 is not very compelling about the relationship between the facility MII and the overall summative score. You have outlier values (facility MII=100) which are likely affecting the regression line fit. It and Table 7 could be moved to an appendix.

6. Temporality in establishing causal association needs to be clarified. The calendar covers a 5-year period; does exposure begin after the baseline round of data collection for female respondents and health facilities? Clarify that these measures precede the beginning of the calendar period. From Figure 1 it appears the 1009 episodes beginning 6 months after the woman’s baseline interview are excluded. If so, why? The description on bottom of pp. 4-5 is not mapped to the numbers in Figure 1.

7. The positive associations for the HRs for client satisfaction and readiness for choice warrant some discussion (Table 8).

8. After reading the limitations (pp. 14-15), one might ask what is the external validity of the findings in this paper?

The paper is complex, with 8 tables and 3 figures, attempting to compare the sample retained versus analyzed, compile the calendar episodes, establish an EFA SFP score, then explain and contrast it with the MII (relationship graph) in both binary and ordinal forms, and then compare their performance with the discontinuation analysis. This is confounded by the need to follow the included and excluded females as well as track the health facilities retained. It’s a heroic attempt to analyze a rich set of data and tackle issues that are important to family planning research and evaluation. In some ways, it would have been best to first prepare the paper on the EFA of the FPQ and then use the score with the MII.

At a minimum, in addition to addressing as many of the above questions, I think the Conclusion should not sound so definitive. The first sentence should start out, “Within its limitations, this study…”. My other
recommendation is going through the manuscript to correct labeling and ensure an outside reader can replicate the analytic steps for reproducibility purposes.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: family planning and fertility

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 10 June 2019

https://doi.org/10.21956/gatesopenres.14081.r27119

© 2019 Holt K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kelsey Holt
Department of Family and Community Medicine, University of California, San Francisco, San Francisco, CA, USA

Thank you very much for the opportunity to review this submission. In the article, the authors present results of an analysis of data from household surveys and facility assessments related to the link between quality of care and contraceptive continuation. Though much research exists analyzing a similar question, the article is unique in utilizing the MII as an exposure variable. This is important because the MII is increasingly being used as a standardized quality indicator of client experience and it is important to know how it relates to contraceptive continuation. I have detailed a number of substantive recommendations to strengthen the paper.
1. I appreciate the use of “discontinuation-while-in-need” as an innovative way to describe the outcome of interest and signal that not all discontinuation is created equal. Please be sure that 1) this is evenly used throughout (e.g., in the Conclusions it is not used); and 2) that when it is first used the definition is given so that it is clear that it does not include people who have switched to another method. If possible, this clarification should also be added to the Introduction of the Abstract (i.e., “discontinuation-while-in-need without switching”) as this will help normalize switching as not being a negative outcome. Also on page 4 where the DHS data from Kenya is reported, it would be important to clarify whether the 31% discontinuation figure allowed for switching.

2. Also related to use of discontinuation-while-in-need as an outcome, I suggest more justification in the body of the paper (and abstract if at all possible) as to why this is an important outcome. In the first paragraph of the Introduction, a circular argument is given (quality is associated with continuation which therefore means that continuation is an important outcome? But why?) Perhaps the authors want to justify this by pointing to the fact that a person’s ability to use contraception when they don’t want to be pregnant is an important outcome because it is an indication that the health system has met their needs/right to reproductive autonomy, either by helping them identify (and making available) a method that will work for them or by imbuing in them the confidence to return for a different method if the first doesn’t work out.

3. In the 4th paragraph of the Introduction, the description of the MII as distinct from tools derived from Bruce, and use of the word “but” before “measures it from the client perspective,” is confusing. Please clarify. My understanding is that the MII was created based on selection of questions that already existed from the Bruce framework (and that were already standard in the DHS, etc.), and thus the MII in many ways is a continuation of this long tradition.

4. The first sentence of the 5th paragraph (“the MII captures information exchange during the counseling session and a woman’s understanding of having received that information, giving it the potential to approximate the overall quality of FP services.”) is unclear – why does the information exchange focus inherently suggest that this would be a sufficient overall quality measure? Please clarify or reword.

5. The other point made further down in paragraph 5 of the Introduction about the importance of placing client perspectives at the center of quality measurement is important and could be elaborated on, for example by linking with new quality frameworks from the WHO and the Lancet Commission for High Quality Health Systems which emphasize the importance of client experience as important in and of itself (regardless of external observations of how care is delivered).

6. Re: the description on page 4 of the facility data collection (beginning “the present study is a secondary analysis...”): it was confusing on first read how the “modified version of the QIQ” relates to the description in the abstract and later in the paper of this facility data collection as a “comprehensive service delivery point assessment.” Standardizing the language would help with ease of understanding for the reader when this facility data collection is described.

7. In the last sentence of the Introduction, the authors state that part of their objective was to “explore the feasibility of these measures in the context [of] quality monitoring at the service delivery point.” However, no data on feasibility of measure implementation is provided in the paper. Please clarify/rephrase.
8. Inclusion criteria: it is not clear to me why the 96 women without information on where they received their method were excluded from the MII analyses? Please consider including them or justify why they were left out even though location of service delivery was not essential to the analysis.

9. Model selection: when describing covariates included in the models, it would be important to add further detail as to conceptually why these variables were selected. Presumably individual characteristics such as age, parity, etc., were conceptualized as potential confounders of the relationship between quality and contraceptive use (e.g., if younger people are both treated differently by providers and also inherently more likely to be less consistent in contraceptive use?). For facility type and method type, why were these included? Was effect modification considered and if so why were no interaction analyses conducted?

10. In the description of the facility quality variables, more detail on the selection of a single representative provider is justified – why only one? Why choose the likely highest performers?

11. In descriptive Tables where statistical tests were used to examine the possibility of statistically significant differences between sub-groups were performed, consider adding the p-values and a description of the approach taken (Chi-Square/T-test?), depending on journal convention.

12. Justification for use of orthogonal rotation to produce uncorrelated factors is needed; why did the authors believe that dimensions of quality would be unrelated to each other? One might imagine that some elements of quality, particularly those that touch on client-provider interactions, would be related. And, if uncorrelated factors are assumed, how do the authors then justify a composite quality score combining the sub-scale scores? Consider switching to oblique rotation or justifying the choice of orthogonal rotation, and please also clarify in the Discussion whether authors believe there is justification for combining sub-scale facility quality scores into composite scores.

13. The Discussion section requires more engagement with prior literature that has used similar approaches to linking facility level quality data to household survey contraceptive use data; notably a recent study by Tumlinson et al. (2015) reported on a very similar analysis, also in urban Kenya. How are these findings similar or different to what others have found related to facility level quality and household contraceptive use? (For example, Fruhauf et al., 2018; Do and Koenig, 2007; Arends-Kuenning and Kessy, 2007; Hong et al., 2006; Ketende et al., 2003; Feyisetan and Ainsworth, 1996).

14. Table 4: it would be very informative to indicate the data source for each of the variables (i.e., exit interview, versus observation, versus provider interview); this will help the reader interpret the data.

15. Many of the factor loadings are below 0.4, and most of the Cronbach alphas are below 0.7 or even below 0.5), suggesting weak scales. The Limitations section should include acknowledgement of this.

16. Relatedly, justification should be provided for not considering content validity when selecting the sub-scales from EFA; standard practice in scale development is to weigh content validity and psychometric data when selecting items. As mentioned in the Limitations section, the scales are limited in this way, but it is unclear why the authors did not do it differently.
17. Labelling the 4th domain “privacy, autonomy, and dignity,” feels misplaced given that 2/3 items are related to privacy. The third is related to comfort asking questions and it is not clear how that item reflects “autonomy” or “dignity”; I suggest a more modest description of this domain to more accurately represent what it covers (e.g., “counseling environment” or “privacy and ease with provider”? wording needs help…)?

18. There is a typo in the last item of Table 4.

19. Table 5: It would be helpful to indicate somewhere what the possible score ranges were for each domain (ranges are given but presumably the full range of possible scores were not always reported?).

20. Table 7 – it is confusing to have different reference groups for the two different MII models. It would greatly aid interpretation to be consistent.

21. It is perplexing that there is no mention of a human rights-based approach to service delivery, given the paradigm shift that has been taking place in recent years in the family planning field. Even on page 14 when the authors highlight the importance of privacy and autonomy, they surprisingly don’t link this to a human rights frame. I recommend making the explicit connection with a rights-based approach to FP service provision in the Intro and Discussion sections.

22. The finding that increased client satisfaction was associated with discontinuation (including a very large OR) deserves more attention. The authors attempt to explain the finding by saying that content validity may be low; however, other than wait time, the other three variables are very clearly about provider treatment, making it difficult to imagine that the construct is measuring something very qualitatively different. Also, explaining this finding by saying that client-report is inherently unreliable appears to go directly against the authors conclusions that the MII is a good measure of quality, and also the idea that client report of their experience is inherently valuable even if it is different from “objective” observations. Even given courtesy bias, why would there be such a strong relationship in the “wrong” direction? Finally, is it possible that some women continue contraception, particularly long-acting methods, due to pressure/coercion from providers and therefore poorer interactions could be associated with inability to remove? A stratified analysis to examine the possibility of effect modification by provider-controlled versus woman-controlled methods is advisable to explore this possibility.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: social epidemiology, quality of care in RH services

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.