OPEN LETTER

How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases [version 1; peer review: awaiting peer review]

Jessica Clark1,2, Wilma A. Stolk3, María-Gloria Basáñez4,5, Luc E. Coffeng3, Zulma M. Cucunubá4,5, Matthew A. Dixon5,6, Louise Dyson7,8, Katie Hampson2, Michael Marks9,10, Graham F. Medley11, Timothy M. Pollington1,7, Joaquin M. Prada12, Kat S. Rock7, Henrik Salje13, Jaspreet Toor5, T. Déirdre Hollingsworth1

1Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
2Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
3Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
4London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
5MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
6Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
7Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
8School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
9Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
10Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
11Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
12School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
13Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK

First published: 27 Jul 2021, 5:112
https://doi.org/10.12688/gatesopenres.13327.1
Latest published: 27 Jul 2021, 5:112
https://doi.org/10.12688/gatesopenres.13327.1

Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals, an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH),
Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials.

Keywords
Mathematical, Statistical, Targets, Public Health, Elimination, Transmission, Cross-cutting, NTD

This article is included in the 2030 goals for neglected tropical diseases collection.
Disclaimer
The views expressed in this article are those of the authors. Publication in Gates Open Research does not imply endorsement by the Gates Foundation.

A renewed roadmap for a new decade
The World Health Organization’s (WHO) 2021-2030 Neglected Tropical Disease (NTD) Roadmap was launched on January 28th, 2021, renewing the commitment of the global NTD community to end the suffering caused by these diseases. The development of the roadmap was guided by extensive global stakeholder consultation, including consultation with mathematical and statistical modellers. Modellers were asked to assess the technical feasibility of proposed goals, to identify major challenges for achieving the new goals from a transmission dynamics perspective, possible acceleration strategies, and key outstanding research questions. Technical commentaries have been published as a collection in Gates Open Research, which detail these insights for 13 NTDs: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil transmitted helminthiases (STH), Taenia solium taeniasis/cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws.

Neglected tropical diseases continue to affect over one billion people as the result of the considerable inequalities in global healthcare systems that fail to support those most in need. The burden of NTDs falls largely on the poorest communities, resulting in an unrelenting cycle of poverty that is driven by negative social, health and economic impacts of infection on individuals and families, augmenting existing social divides. For infections with a substantial zoonotic component, morbidity and mortality among livestock also affect people’s livelihood with economic impacts that transcend medical implications. Notable progress to reduce the burden of NTDs has been made as a result of the commitments made in 2012 through the WHO 2020 NTD Roadmap and the London Declaration on NTDs. As a result, 500 million people no longer require interventions against several NTDs and 40 countries, territories and areas have eliminated at least one disease. These wins are the outcome of concerted and consolidated efforts from endemic communities and invaluable volunteers, governments, donor agencies and the pharmaceutical industry. Despite such early gains, reaching the endgame presents some of the greatest challenges – namely sustaining those early gains whilst identifying and averting small numbers of sparsely distributed cases. The 2030 roadmap is shaped around three pillars that aim to support global efforts to maintain the gains, address the challenges and ultimately combat NTDs: 1. Accelerating programmatic action. 2. Intensifying cross-cutting approaches and 3. Shifting operating models and culture to facilitate in country ownership.

The use of mathematical and statistical modelling in NTD research and policy has until recently, and with a few exceptions (e.g., onchocerciasis), lagged behind other groups of infectious diseases that receive more focus and funding (often, diseases that impact wealthier individuals and nations, or those perceived to potentially impact these). However, this is changing with the advent of groups like the NTD Modelling Consortium, who have developed the Policy-Relevant Items for Reporting Models in Epidemiology of Neglected Tropical Diseases (PRIME-NTD) principles, as a guide to communicate the quality and relevance of modelling to stakeholders. This has added clout to the call for modelling in the policy arena as well as setting a high bar of best practice for the wider modelling community. Having now gained significant traction, the use of modelling in NTD policy has contributed to new intervention tools, vector control strategies, shaped policy responding to COVID-19-related programme disruptions and has aided in the development of WHO guidelines. For this positive relationship to continue, it is imperative to invest in a mutual understanding through ongoing conversations between policy-makers and modellers, to determine what kind of questions are the “right” questions, how to interpret uncertainty and what the models can and cannot be used for.

This piece introduces a collection of papers borne of a meeting in Geneva, in April 2019 attended, among others, by the NTD Modelling Consortium and convened by the WHO: Achieving NTD control, Elimination and Eradication Targets Post-2020; Modelling Perspectives & Priorities. As new management targets and strategies took shape, the meeting provided policy makers and modellers the space to ask and answer specific questions regarding the proposed 2030 goals and the intended strategies to achieve them. Although the roadmap covers a range of diseases with diverse epidemiologies and differing management recommendations, the priority questions identified by modelers and stakeholders during the 2019 meeting shared three similar themes that should be considered in NTD modelling moving forward: timelines, programme design, and clinical study design.

Timelines
Goals are only worth setting in the context of time. It is therefore not surprising that many of the technical commentaries in this collection identified timelines as a priority issue. The public health and economic benefits of reaching goals are innumerable but can only be achieved by the target year through appropriate mobilisation of diverse resources. Modelling in the forms of past inference and forward projections can align many moving parts (for example epidemiological, demographic, and social considerations) to inform our understanding of the reasons why programmes succeed or fail. Forecasts have played a crucial role in understanding whether the 2020 and associated collection, 2025 and 2030 goals can be reached under current strategies with the caveat that long-term predictions naturally become more uncertain.

In some instances, whether a goal can or will be met on time is relatively easy to ascertain – for example it is a resounding no for leprosy and rabies, which are hindered by passive case control, long quiescent incubation periods, and inadequate investment in interventions. Alternatively, the
goals for schistosomiasis11, STH4, and onchocerciasis13 seem achievable in some or most settings, depending on localised parameters like baseline prevalence, and already experienced duration of and adherence to mass drug administration (MDA) programmes. In the case of \textit{T. solium}, a lack of internationally agreed goals for elimination or control curtails the ability to effectively model timelines; for example, the 2021-2030 NTD roadmap proposes the overall milestone of achieving “intensified control in hyperendemic areas”, without agreeing on technical definitions for \textit{T. solium} endemicity levels, or defining measurable criteria for attaining “intensified” control14.

Programme design

The diseases considered by the London Declaration and WHO roadmaps are at differing stages in their trajectories. Whilst some are on the cusp of achieving their goals, others face political and epidemiological barriers to progress. Both scenarios raise several priority questions regarding programme design, where ‘programme’ can mean intervention or surveillance. In addition to determining success or failure within the defined intervention time frames, modelling has provided insights into key factors of operational design like the treatment coverage necessary to reach goals in a given setting. Where it may not be possible, models can be used to test the efficacy of separate and combined chemotherapeutic15 and non-pharmaceutical interventions23,43,66, including combined interventions that target multi-host systems for zoonotic NTDs45. Additionally, deciding the optimal timing or frequency40,46 of treatment, and knowing who to treat20,61 are essential to the success of all interventions. Of course, the intervention strategies most likely to lead to achievement of the goals may not be sustainable in terms of cost to individuals, governments, or donors. By partnering highly detailed transmission models with cost-effectiveness analysis, modelling can also contribute to tailored insights regarding the affordability and benefits versus costs of interventions23,43,66. Models can also be used to explore integration between NTD programmes, or to understand the potential cross-utility of existing NTD programmes on other helminth species, such as exploring the additional benefit of national schistosomiasis control programmes using praziquantel on \textit{T. solium} prevalence in co-endemic areas45. Understanding this cross-utility is vital to intensifying cross-cutting approaches – one of the three core pillars of the roadmap, that differentiates the framework from its predecessor.

These are all very practical features of intervention programmes that can in principle be planned for, but underlying features of target populations and human nature can undermine these plans. Survey data in recent years have made it evident that whilst the aim may be to deliver treatment at a certain geographical and therapeutic coverage, it is not analogous with consumption, as treatment is systematically not ingested by some35,67, or is not disseminated to the full intended group, reducing the true coverage. There are a variety of reasons for this35,56, but it is likely that similar mechanisms impact participation in surveillance, therefore biasing the estimates of prevalence, particularly when treatment and surveillance are co-occurring (e.g., gHAT67, rabies35,66). Modelling shows that the impact of this variable true coverage depends on the pathogen in question and transmission intensity56,69,71 but it undoubtedly has an impact on reaching public health goals23,71.

Once a strategy has been deemed effective and prevalence targets are attained, it is likely that these interventions either transition, such as going from MDA to identified case management, or they stop all together. Establishing robust surveillance strategies at this point is vital, but obviously not everyone can be regularly sampled and not every incident infection case will be detected. Stochastic events like reinfection and reintroduction are risks that can drive resurgence. Modelling can support the identification of the optimal surveillance strategy and determine which prevalence or intensity indicators need to be monitored to ensure the desired public health goal74-76, although challenges remain in developing long-term strategies77. Modelling can make useful contributions in developing sustainable, effective interventions and surveillance strategies and should therefore be included in any programmatic design from the start. As embodied by the 2021-2030 NTD roadmap, impactful interventions cannot be achieved by working in silos, but instead require continuous communication between all parties of an interdisciplinary team.

Drug development and clinical study design

Though modelling is increasingly used in public health decision making, the use of modelling to direct clinical trial design and drug development is not so common, and even less so for NTDs. To reach goals like elimination as a public health programme (trachoma, STH, schistosomiasis and LF) and elimination of transmission (onchocerciasis) novel drug development will be critical1,4,11,13,78. However, financial returns on investments into NTDs are limited and therefore largely unappealing, particularly because of the heavy reliance by endemic nations, on donations from pharmaceutical producers. Increased use of mathematical modelling could reduce the financial waste associated with the drug-development-to-distribution-pipeline79. If we consider this pipeline in three parts; pre-clinical, clinical trial and distribution, it is clear that modelling can provide valuable insight at each stage. Onchocerciasis and LF have recently benefited from pharmacokinetic-pharmacodynamics modelling, translating pre-clinical non-human experimental results into quantitative insights relevant to human treatment79. Clinical trial simulations are designed to include all aspects of a clinical trial protocol including (but not limited to) recruitment criteria, drug properties/ effectiveness and follow-up times80, providing valuable guidance that translates into more effective, efficient, cost-efficient and robust clinical trials. In addition to providing insight into the optimal distribution of new drugs81, rethinking the distribution of existing drugs to achieve public health targets can also be guided by modelling75,88.

Challenges

Modelling has certainly addressed many of the key questions asked of modellers at the 2019 meeting2. However, cross-disease challenges remain82. The most common of these, highlighted by all groups involved in the meeting
and this collection, is undoubtedly a lack of data or poor data quality. This could be because certain parameters simply cannot be measured; because of vast heterogeneity or because they have yet to be collected\(^9\). For example, VL has a highly variable incubation period, unknown duration of asymptomatic infection and estimates for the duration of lasting immunity are ill-defined\(^{8,44,85}\), introducing uncertainty into the temporal dynamics underlying any projections. Chagas disease, gHAT and leprosy also suffer from indeterminate incubation periods\(^{8,12,21}\) impacting case detection and adding greater uncertainty in epidemiological estimates fitted to by models\(^{85,86}\). Asymptomatic or pre-symptomatic infection is common of many NTDs and presents a significant challenge to their management. For example, asymptomatic VL infections cannot be treated, whereas it is possible to treat asymptomatic gHAT but only if it is able to be detected. Identifying their respective proportions in an infected population, particularly in the absence of high surveillance coverage, means accounting for this group using roundabout methods and proxy diagnostics\(^8\).

Many diagnostics are indirect, proxy measures of case detection, often with less than perfect sensitivity or specificity\(^{9,24}\), and have a direct effect on perceived prevalence and individual burdens of infection\(^{8,9}\). Given that models are only as good as the data to which they are fitted, this has a significant impact on the utility of model results. For example, in the instances of STH and intestinal schistosomiasis (Schistosoma mansoni), WHO targets are given in terms of eggs per gram of faecal matter as detected with the Kato-Katz method, which notoriously suffers from poor sensitivity, particularly for low intensity infections\(^9\), invariably underestimating prevalence. Where a multi-host system is present for zoonotic NTDs, it is possible to measure infection through direct observation of parasite stages in the animal host\(^8\)\(^{13}\), via necropsy or other methods\(^9\), it is likely that this approach is inappropriate for monitoring and evaluating the likes of T. solium control programmes, due to the large animal sample sizes required to detect a statistically meaningful impact on transmission, especially in low prevalence settings\(^{11}\). Molecular xenomonitoring (testing vectors for the parasite instead of human hosts) for LF and onchocerciasis has shown promise\(^9\) but operational research gaps remain, impacting large-scale utilisation\(^9\). Reconciling these different streams of imperfect diagnostic data will be key to their utility in modelling and indeed to reaching and sustaining public health goals.

The operational units over which epidemiological data are collected, and projections made are also often over somewhat arbitrary administrative borders that infectious diseases do not adhere to. For rabies, non-spatial models are inadequate for capturing the low-endemicity incidence rates\(^{15}\) such that more data-intensive modelling approaches are required. In addition to questionable detection success, VL surveillance has operated over geographical units that are too large to evaluate the success of control methods\(^8\), despite modelling showing that transmission is highly localised over smaller spatial scales (i.e. 85% of inferred transmission distances ≤300m)\(^{9}\). Similarly for onchocerciasis, modelling shows that the rate at which interventions can be scaled down depend strongly on the spatial units of assessment\(^{3,9}\). Clustering of T. solium porcine cysticercosis around human taeniasis carriers, particularly evident in South American communities, demonstrates the need for spatially explicit models in certain settings\(^{15,97}\), such as the recently developed CystiAgent model for Peru\(^9\), capable of testing spatially structured interventions. From this it is evident that whilst spatial heterogeneity requires nuanced model structure, the leading challenge here is the paucity of data at the spatial level necessary to parameterise the models for spatially relevant insights. This will become ever more important as all NTDs move towards low-prevalence and spatially-heterogenous incidence patterns.

The assumptions made to overcome these uncertainties often differ across models – which then produce differing results. Whilst this is somewhat overcome by the practice of model comparison\(^{8,10}\), which highlights important biological and population processes that impact epidemiological trajectories, these unknowns wave a clear flag for collaborative opportunities between modellers, field epidemiologists and clinicians. Indeed, the optimal working relationship is a synergistic pathway, where the model’s needs drive data collection, the data shapes further model iterations, and these then inform policy and the outcomes at the programmatic and clinical level\(^{3,12,83,85,104–106}\). Improving communication between these groups is critical to achieving the desired public health gains\(^9\).

Conclusion

The increased use of mathematical and statistical modelling over the last decade has helped move the field of NTDs into a more quantitative space, providing the link between epidemiological concepts and observed reality. For modelling to continue to fill this role and influence decision-making, ongoing conversations and engagement between all parties will be paramount. These will, in turn, overcome the continuous challenges of data quality and access, and the consequent model assumptions required. As programme and disease management move towards a country-ownership framework under the new roadmap, it will be key that modelling follows suit, overcoming systematic notions of knowledge ownership and challenging associated power dynamics\(^{109–112}\). In this way, future modelling will work to support this new NTD landscape.

Data availability

No data are associated with this article.

Acknowledgements

We would like to acknowledge all of those who contributed to the pieces within this collection. We list them here in alphabetical order; Fernando Abad-Franch\(^{30,42}\), Bernadette Abela-Ridder\(^2\), Emily Adams\(^9\), Maryam Alice\(^3,85\), Marina
Antillon16,51, Benjamin F. Arnold1, Robin L. Bailey9, Seth Blumberg1, Anna Borlasse1, Uffe C Braae19,64, Maria Soledad Castaño16,61, Joel Changalucha27, Nakul Chinm16,63, Sarah Cleaveland19, Ronald E Crump33,35, Derek A.T. Cummings13, Christopher Davis8,35, Emma L. Davis32,35, Michael Deiner1, Brecht Devleesschauwer15,21, Andy P Dobson14, Daniel Engelmann8, Neil Ferguson4, Claudio Fronterre1, Sarah Gabriel16, Federica Giardina6, William Godwin1, Sébastien Gourbière46, Jonathan I D Hamley17,39, Wendy E Harrison9, Alex Holmes38, Ching-I Huang38,35, Maria V Johansen13, John Kaldor16, Matt J. Keeling38,46,51, Charles H. King1, Lea Knopf2, Periklis Kontoroupis11, Epke A. Le Rutte21, Justin Lessler24, Michael Z Levy63, Thomas M. Lietman1, Kennedy Lushas27,51, Mary Veronica Malizia21, Jodie McNemar36,69, Edwin Michael11, Philip Milton17,36, Elizabeth Miranda24, Eric Q. Mooring17, Pierre Nouvellet12, David Pigott44, Travis C. Porco1, Jorge E. Rabinovich9, Sylvia Ramiandrasoa37, Isabel Rodriguez-Barraquer2, Kristyna Ryys35, Veronika Schmidt19, Morgan E. Smith11, Andrew Steer40, Michelle Stanton2, Fabrizio Tediosi16,51, Tenzin Tenzin11, S. M. Thumbi14,44, Michael Tildesley35, Panayiota Touloupou22, Chiara Trevisan32, Caroline Trotter25, Inge Van Damme55, Carolin Vegvari17, Juan-Carlos Villar46,29, Sake J. de Vlas21, Martin Walker20,37, Ryan Wallace2, Andrea S. Winkler5,19 & Peter Winskel17.

1 Francis I Proctor Foundation, University of California, San Francisco, CA 94143, United States
2 Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford OX3 7LF, UK
3 Center for Global Health and Diseases and Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH 44106, USA.
4 Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
5 Centers for Disease Control and Prevention (CDC), Atlanta, USA
6 Centre for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
7 Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster LA1 4YW, UK
8 Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
9 Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CCT La Plata; CONICET, Universidad Nacional de La Plata), La Plata, Provincia de Buenos Aires, Argentina
10 Departamento de Investigaciones, Fundación Cardiopanfilo. Instituto de Cardiología, Bogotá, Colombia
11 Department of Biological Sciences, University of Notre Dame, South Bend, Indiana IN 46556, USA
12 Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium.
13 Department of Biostatistics, Epidemiology and Bioinformatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
14 Department of Ecology and Evolutionary Biology, Princeton University, New Jersey, USA
15 Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.
16 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinistrasse 57, Basel, 4051, Switzerland
17 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
18 Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.
19 Department of Neurology, Center for Global Health, School of Medicine, Technical University Munich (TUM), Munich, Germany.
20 Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research, Royal Veterinary College, Hatfield, UK.
21 Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
22 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
23 Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
24 Department of Veterinary and Agricultural Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyr lægevej 100, 1870 Frb. C., Denmark.
<table>
<thead>
<tr>
<th>Number</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Department of Veterinary Medicine, University of Cambridge, Cambridge, UK</td>
</tr>
<tr>
<td>26</td>
<td>Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Meirelbeke, Belgium.</td>
</tr>
<tr>
<td>27</td>
<td>Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania</td>
</tr>
<tr>
<td>28</td>
<td>Field Epidemiology Training Program Alumni Foundation Inc., Quezon City, Philippines</td>
</tr>
<tr>
<td>29</td>
<td>Grupo de Cardiología Preventiva, Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia.</td>
</tr>
<tr>
<td>30</td>
<td>Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil</td>
</tr>
<tr>
<td>31</td>
<td>Imperial College London, London, UK</td>
</tr>
<tr>
<td>32</td>
<td>Infectious Diseases Modelling Group, University of Sussex, Sussex House, Brighton BN1 9RH, UK</td>
</tr>
<tr>
<td>33</td>
<td>Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK</td>
</tr>
<tr>
<td>34</td>
<td>Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA</td>
</tr>
<tr>
<td>35</td>
<td>Kirby Institute, University of New South Wales, Sydney, Australia</td>
</tr>
<tr>
<td>36</td>
<td>Liverpool School of Tropical Medicine</td>
</tr>
<tr>
<td>37</td>
<td>London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.</td>
</tr>
<tr>
<td>38</td>
<td>Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK</td>
</tr>
<tr>
<td>39</td>
<td>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.</td>
</tr>
<tr>
<td>40</td>
<td>Murdoch Childrens Research Institute, Melbourne, Australia</td>
</tr>
<tr>
<td>41</td>
<td>National Centre for Animal Health, Department of Livestock, Ministry of Agriculture & Forests Serbithang, Babesa, Bhutan</td>
</tr>
<tr>
<td>42</td>
<td>Núcleo de Medicina Tropical, Universidade de Brasília, Brasília, Distrito Federal, Brazil</td>
</tr>
<tr>
<td>43</td>
<td>One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis.</td>
</tr>
<tr>
<td>44</td>
<td>Paul G Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA</td>
</tr>
<tr>
<td>45</td>
<td>Schistosomiasis Control Initiative Foundation, Edinburgh House, 170 Kennington Lane, Lambeth, London SE11 5DP, UK.</td>
</tr>
<tr>
<td>46</td>
<td>School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK</td>
</tr>
<tr>
<td>47</td>
<td>Service de Lutte contre les Maladies Endémiques et Négligées (SLMEN), Ministry of Public Health, Madagascar.</td>
</tr>
<tr>
<td>48</td>
<td>The Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.</td>
</tr>
<tr>
<td>49</td>
<td>The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, and the Royal Melbourne Hospital, Melbourne, Australia</td>
</tr>
<tr>
<td>50</td>
<td>UMR 5096 ‘Laboratoire Génome et Développement des Plantes’, Université de Perpignan Via Domitia, Perpignan, France</td>
</tr>
<tr>
<td>51</td>
<td>University of Basel, Peterplatz 1, Basel, 4051, Switzerland</td>
</tr>
<tr>
<td>52</td>
<td>University of California, San Francisco, California, USA</td>
</tr>
<tr>
<td>53</td>
<td>University of Florida, Gainesville, Florida, USA</td>
</tr>
<tr>
<td>54</td>
<td>University of Washington, Seattle, Washington, USA</td>
</tr>
<tr>
<td>55</td>
<td>Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematics Institute and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK</td>
</tr>
<tr>
<td>56</td>
<td>LYO-X GmbH, Allschwil, Switzerland</td>
</tr>
</tbody>
</table>
References

Reference Source

Gates Open Research 2021, 5:112 Last updated: 29 JUL 2021

Page 8 of 10
The importance of patient compliance

Effect of intensified control strategies on incidence of visceral leishmaniasis in a highly endemic district of Bihar, India. An interrupted time series analysis to assess interventions as new WHO 2021 - 2030 elimination goals are agreed. ResearchGate Preprint. 2020.

Reference Source

